SALISKINHAIR 50®
Ácido salicílico solúvel a 50%

http://aformulabr.com.br/qrcode/saliskinhairv01.pdf
SALISKINHAIR 50®

Ácido salicílico solúvel a 50%

DESCRIÇÃO

Beta-hidroxiácido com propriedades queratolíticas e antimicrobianas, evitando a contaminação de bactérias e fungos oportunistas.

MECANISMO DE AÇÃO

SaliskinHair 50® é caracterizado além de regularizador da oleosidade, como um anti-inflamatório potencial, sobretudo por apresentar efeito esfoliativo e hidratante, cuja característica principal é a capacidade de penetração nos poros ajudando na remoção da camada queratinizada com uma ação irritante muito menor que os outros ativos, inclusive funcionando como anti-aging melhorando a aparência da pele fotoenvelhecida, com baixa irritação quando comparado ao ácido glicólico sendo assim considerado polifuncional, sem ter aspecto e sensação desagradável que pode ocorrer com o ácido salicílico usual.

INDICAÇÕES

✓ Hiperqueratose: caspa, dermatite, seborreica, ictiose, psoríase e acne.

DOSE USUAL

Recomendação tópica de 2 a 6% de SaliskinHair 50®, aplicar 2 vezes ao dia.

SUGESTÕES DE FÓRMULAS

<table>
<thead>
<tr>
<th>SaliskinHair 50®</th>
<th>Clindamicina fosfato</th>
<th>Aveia coloidal</th>
<th>Mousse qsp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2%</td>
<td>1,2%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Modo de uso: aplicar à noite podendo ser utilizada 2 vezes ao dia, se necessário, evitando a exposição solar.

Indicação: rosácea e acne.

<table>
<thead>
<tr>
<th>SaliskinHair 50®</th>
<th>Uréia</th>
<th>Óleo de amêndoas</th>
<th>Base adimax qsp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3%</td>
<td>20%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Modo de uso: aplicar a noite nos locais afetados. Aplicar creme ou loção durante o dia.

Indicação: hiperqueratose e ictiose.

PRINCIPAIS REFERÊNCIAS

Comparative study of the effect of 50% pyruvic and 30% salicylic peels on the skin lipid film in patients with acne vulgaris.

AIM: The aim of the study was to compare the effect of 50% pyruvic and 30% salicylic peels on facial sebum secretion in patients with acne vulgaris, aged 13-30. MATERIAL AND METHODS: The level of secreted sebum was determined in 20 men and women. Ten patients were treated with 50% pyruvic acid and the remaining 10 with 30% salicylic acid. Each peel was applied five times at 2-week intervals. The sebum measurements were taken in the T- and U-zones using a Sebumeter SM 815 (Courage & Khazaka, Germany). The last, sixth measurement was taken 2 weeks after the treatment. RESULTS: A statistically significant decrease in the level of secreted sebum in both U- and T- zones was observed in the patients studied after the third application of 50% pyruvic peel and the second application of 30% salicylic peel. Two weeks following the completion of therapy, sebumetric measurements demonstrated a greater reduction in the facial skin lipid film among the patients treated with salicylic peel. CONCLUSIONS: Peels with 50% pyruvic acid and 30% salicylic acid are the procedures that significantly contributed to a decrease in the level of secreted sebum on the facial skin surface in the group of patients studied. A greater therapeutic effect was observed following 30% salicylic peel, which might be associated with its high lipophilic properties and easier penetration through the lipid barriers of the epidermis.

Targeted delivery of salicylic acid from acne treatment products into and through skin: role of solution and ingredient properties and relationships to irritation.

Salicylic acid (SA) is a beta hydroxy acid and has multifunctional uses in the treatment of various diseases in skin such as acne, psoriasis, and photoaging. One problem often cited as associated with salicylic acid is that it can be quite irritating at pH 3-4, where it exhibits the highest activity in the treatment of skin diseases. We have identified strategies to control the irritation potential of salicylic acid formulations and have focused on hydroalcoholic solutions used in acne wipes. One strategy is to control the penetration of SA into the skin. Penetration of the drug into various layers of skin, i.e., epidermis, dermis, and receptor fluid, was measured using a modified Franz in vitro diffusion method after various exposure times up to 24 hours. A polyurethane polymer (polynomialpolymer-15) was found to be an effective agent in controlling delivery of SA. In a dose-dependent fashion it targeted delivery of more SA to the epidermis as compared to penetration through the skin into the receptor fluid. It also reduced the rapid rate of permeation of a large dose of SA through the skin in the first few hours of exposure. A second strategy that proved successful was incorporation of known mild nonionic surfactants like isoceteth-20. These surfactants cleanse the skin, yet due to their inherent mildness (because of their reduced critical micelle concentration and monomer concentration), keep the barrier intact. Also, they reduce the rate of salicylic acid penetration, presumably through micellar entrapment (either in solution or on the skin surface after the alcohol evaporates). Cumulative irritation studies showed that targeting delivery of SA to the epidermis and reducing the rapid early rate of penetration of large amounts of drug through the skin resulted in a reduced irritation potential. In vivo irritation studies also showed that the surfactant system is the most important factor controlling irritancy. SA delivery is secondary, as formulations with less SA content reduced the rate of delivery to the receptor and yet were some of the most irritating formulations tested, presumably due to the action of the specific anionic surfactant on the barrier. Alcohol content also did not appreciably affect irritation and SA delivery; formulations with considerably lower alcohol content but containing anionic versus nonionic surfactant systems exhibited considerably higher irritancy. Thus the surfactant type was again the predominant factor in those studies, although arguably alcohol plays some role (solubilization of SA). Results showed that both polymers and mild surfactants work in concert to provide the optimal formulation benefits of targeted delivery and reduced irritation. Synergistic relationships among hydroalcoholic formulation components will be discussed along with the mechanisms likely involved in controlling delivery of SA to skin.
Salicylic acid peels for the treatment of acne vulgaris in Asian patients.

BACKGROUND: Salicylic acid peels have been introduced as a useful modality in acne treatment. Few studies have examined its efficacy and safety, especially in darker skin. OBJECTIVE: To assess the efficacy and safety of salicylic acid peels as a treatment for acne vulgaris in Asian patients. METHODS: Thirty-five Korean patients with facial acne were treated with 30% salicylic acid peels biweekly for 12 weeks. Lesion counts and Dr. Cunliffe's score were assessed by a blinded evaluator. Safety assessments and patient's evaluations were also recorded. RESULTS: Both inflammatory and noninflammatory acne lesion counts were decreased in proportion to the duration of treatment. Dr. Cunliffe's acne grade was statistically significantly decreased after treatment. The side effects were tolerable in most cases, and all patients were pleased with their peel results. Stratum corneum hydration, skin surface lipid, skin pH, and transepidermal water loss were unchanged from baseline levels. CONCLUSION: Salicylic acid peels are an effective and safe therapy for acne vulgaris in Asian patients.

REFERÊNCIAS

