MOROSIL®
Redução em até 50% da gordura abdominal
http://aformulabr.com.br/qrcode/morosilmaceioafv01.pdf
MOROSIL®
Redução em até 50% da gordura abdominal

DESCRIÇÃO
Morosil® é um extrato seco obtido a partir do Citrus sinensis L. Osbeck, sendo uma fonte de pigmentos de antocianinas, excelentes antioxidantes, raramente encontrados em outras frutas cítricas, elevado teor de vitamina C, flavonoides e ácidos hidroxicinâmicos.

MECANISMO DE AÇÃO
Morosil® promove uma redução acentuada e proporcional no tamanho dos adipócitos e no acúmulo de lípidios. Quando associado à sinefrina e C3G, aumenta a atividade da enzima lipase hormônio sensível (HSL), contribuindo para a lipólise e a redução da hipóxia no tecido adiposo, ocasionando por consequência, o controle dos processos inflamatórios relacionados com a resistência insulínica. Assim, a atuação do Morosil® realiza-se devido ao mecanismo sinérgico dos polifenóis totais, promovendo o gerenciamento do peso quando submetido a dieta hipercalórica, num aumento da sensibilidade à insulina e na redução dos triglicerídeos e colesterol total.

INDICAÇÕES
✓ Reduz o ganho de peso e o acúmulo de gordura.

DOSE USUAL
Recomendação oral de 400 a 500 mg de Morosil® (Citrus sinensis L. Osbeck) extrato seco ao dia.

SUGESTÕES DE FÓRMULAS

Morosil® (Citrus sinensis L. Osbeck) extrato seco.... 400 mg
Passiflora incarnata extrato seco................................. 88,25 mg
L Theanina .. 200 mg
Shake qsp... 1 sachê

Modo de uso: dissolver 1 sachê em 250 ml de água fria ao dia.
Indicação: redução da medida abdominal, aumento da saciedade e controle glicêmico.

Morosil® (Citrus sinensis L. Osbeck) extrato seco....150 mg
Garcinia cambodja..150 mg
Griffonia simplicifolia (ext. padronizado 99% 5HTP).....80 mg

Modo de uso: 1 dose 2 vezes ao dia.
Indicação: controle no acúmulo de gordura e obesidade.

PRINCIPAIS REFERÊNCIAS

Clinical evaluation of Moro (*Citrus sinensis* (L.) Osbeck) orange juice supplementation for the weight management

In the last years, several studies have recently evaluated the beneficial effects of red orange juice (*Citrus sinensis* (L.) Osbeck) and its active components in weight management and obesity. Moro orange is a cultivar of red orange, particularly rich in active compounds such as anthocyanins, hydroxycinnamic acids, flavone glycosides and ascorbic acid, which displays anti-obesity effects in vitro and in vivo studies. In this clinical study, the effect of a Moro juice extract (Morosil®, 400 mg/die) supplementation was evaluated in overweight healthy human volunteers for 12 weeks. Results showed that Moro juice extract intake was able to induce a significant reduction in body mass index (BMI) after 4 weeks of treatment (p < 0.05). Moreover, in subjects treated with Moro extract, body weight, BMI, waist and hip circumference were significantly different from the placebo group (p < 0.05). In conclusion, it could be suggested that the active compounds contained in Moro juice have a synergistic effect on fat accumulation in humans and Moro juice extract can be used in weight management and in the prevention of human obesity.

Blood orange juice inhibits fat accumulation in mice

OBJECTIVE: To analyze the effect of the juice obtained from two varieties of sweet orange (*Citrus sinensis* L. Osbeck), Moro (a blood orange) and Navelina (a blond orange), on fat accumulation in mice fed a standard or a high-fat diet (HFD).

METHODS: Obesity was induced in male C57/Bl6 mice by feeding a HFD. Moro and Navelina juices were provided instead of water. The effect of an anthocyanin-enriched extract from Moro oranges or purified cyanidin-3-glucoside (C3G) was also analyzed. Body weight and food intake were measured regularly over a 12-week period. The adipose pads were weighted and analyzed histologically; total RNA was also isolated for microarray analysis.

RESULTS: Dietary supplementation of Moro juice, but not Navelina juice significantly reduced body weight gain and fat accumulation regardless of the increased energy intake because of sugar content. Furthermore, mice drinking Moro juice were resistant to HFD-induced obesity with no alterations in food intake. Only the anthocyanin extract, but not the purified C3G, slightly affected fat accumulation. High-throughput gene expression analysis of fat tissues confirmed that Moro juice could entirely rescue the high fat-induced transcriptional reprogramming.

CONCLUSION: Moro juice anti-obesity effect on fat accumulation cannot be explained only by its anthocyanin content. Our findings suggest that multiple components present in the Moro orange juice might act synergistically to inhibit fat accumulation.

Red Orange: Experimental Models and Epidemiological Evidence of Its Benefits on Human Health

In recent years, there has been increasing public interest in plant antioxidants, thanks to the potential anticarcinogenic and cardioprotective actions mediated by their biochemical properties. The red (or blood) orange (*Citrus sinensis* (L) Osbeck) is a pigmented sweet orange variety typical of eastern Sicily (southern Italy), California, and Spain. In this paper, we discuss the main health-related properties of the red orange that include anticancer, anti-inflammatory, and cardiovascular protection activities. Moreover, the effects on health of its main constituents (namely, flavonoids, carotenoids, ascorbic acid, hydroxycinnamic acids, and anthocyanins) are described. The red orange juice demonstrates an important antioxidant activity by modulating many antioxidative enzyme systems that efficiently counteract the oxidative damage which may play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes, and cancer. The beneficial effects of this fruit may be mediated by the synergic effects of its compounds. Thus, the supply of natural antioxidant compounds through a balanced diet rich in red oranges might provide protection against oxidative damage under differing conditions and could be more effective than the supplementation of an individual antioxidant.
Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk

BACKGROUND: Oxidative and inflammatory stresses are involved in the pathogenesis of atherosclerosis. The consumption of fruit and vegetables is associated with improved health and reduced cardiovascular risk. Red oranges have a high content of antioxidant and antiinflammatory substances, but there is a paucity of data concerning their effects on cardiovascular biomarkers in subjects with increased cardiovascular risk. OBJECTIVE: We investigated the effect of red orange juice intake on endothelial function, oxidative stress, and markers of inflammation in subjects with increased cardiovascular risk. DESIGN: Nineteen nondiabetic subjects with increased cardiovascular risk (aged 27-56 y) were included in a randomized, placebo-controlled, single-blind crossover study and compared with 12 healthy, nonobese control subjects. In 2 periods of 7 d each with a 3-d interval, each participant alternatively received 500 mL red orange juice/d and 500 mL placebo/d in a random sequence. All measurements were performed in the morning after overnight fasting. RESULTS: Endothelial function, which was measured as flow-mediated dilation, significantly improved and was normalized (5.7% compared with 7.9%; P < 0.005) after 1 wk of red orange juice consumption. Similarly, concentrations of high-sensitivity C-reactive protein, IL-6, and TNF-α significantly decreased (P < 0.001). Red orange juice had no significant effect on nitric oxide plasma concentrations. CONCLUSION: A 7-d consumption of red orange juice ameliorates endothelial function and reduces inflammation in nondiabetic subjects with increased cardiovascular risk.

Moro orange juice prevents fatty liver in mice

AIM: To establish if the juice of Moro, an anthocyanin-rich orange, may improve liver damage in mice with diet-induced obesity. METHODS: Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk. Liver morphology, gene expression of lipid transcription factors, and metabolic enzymes were assessed. RESULTS: Mice fed HFD displayed increased body weight, insulin resistance and dyslipidemia. Moro juice administration limited body weight gain, enhanced insulin sensitivity, and decreased serum triglycerides and total cholesterol. Mice fed HFD showed liver steatosis associated with ballooning. Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-α and its target gene acylCoA oxidase, a key enzyme of lipid oxidation. Consistently, Moro juice consumption suppressed the expression of liver X receptor-α and its target gene fatty acid synthase, and restored liver glycerol-3-phosphate acyltransferase 1 activity. CONCLUSION: Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.

Antiinflammatory effects of a red orange extract in human keratinocytes treated with interferon-gamma and histamine

Red oranges are an important component of the so-called Mediterranean diet and they have been used by traditional medicine for their health protective properties, particularly to heal sore throat and cough, suggesting an interesting antiinflammatory activity. The purpose of this study was to evaluate the antiinflammatory activity of a red orange (Citrus sinensis) varieties: Moro, Tarocco, Sanguinello) complex (ROC), characterized by high levels of anthocyanins, flavanones, hydroxycinnamic acids and ascorbic acid, on the human keratinocyte line NCTC 2544 exposed to interferon-gamma (IFN-gamma) and histamine. The expression of immunomodulatory membrane molecules such as inter-cellular adhesion molecule-1 (ICAM-1) by Western blot analysis, and the release of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) through ELISA kits, were determined. ICAM-1 modulates the permanence and activation of T lymphocytes in the epidermis. MCP-1 is a specific chemoattractant for monocytes and dendritic cells. IL-8 is important for the recruitment of both neutrophils and T lymphocytes. Addition of ROC at different concentrations together with IFN-gamma and histamine induced a dose-dependent inhibition of ICAM-1 expression and MCP-1 and IL-8 release. ROC shows interesting antiinflammatory properties in human keratinocyte cells NCTC 2544. This natural complex could have a topical employment and mitigate the consequences of some skin pathologies.
Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes

Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte-specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. In this study, we demonstrated that anthocyanins (cyanidin or cyanidin 3-glucoside) have the potency of a unique pharmacological function in isolated rat adipocytes. Treated adipocytes with anthocyanins enhanced adipocytokine (adiponectin and leptin) secretion and up-regulated the adipocyte specific gene expression without activation of PPARgamma in isolated rat adipocytes. The gene expression of adiponectin was also up-regulated in white adipose tissue in mice fed an anthocyanin supplemented diet. As one of the possible mechanisms, AMP-activated protein kinase activation would be associated with these changes, nevertheless, the AMP:ATP ratio was significantly decreased by administration of the anthocyanins. These data suggest that anthocyanins have a potency of unique therapeutic advantage and also have important implications for preventing obesity and diabetes.

Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome

Obesity is defined as the accumulation of excess adipose tissue resulting from various metabolic disorders. Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. Metabolic syndrome is characterized by a group of metabolic risk factors in one person. Abdominal obesity and adipocyte dysfunction play an important role in the development of this syndrome. Anthocyanins are used as a food coloring, and they are widely distributed in human diets including berries, suggesting that large amounts of anthocyanins are ingested from plant-based foods. This study shows that anthocyanins have a significant potency of antiobesity and ameliorate adipocyte function in vivo and in vitro systems and also that they have important implications for preventing metabolic syndrome.

REFERÊNCIAS

