DIMPRESSS®

Freeze-drying rico em SOD no tratamento da celulite

http://aformulabr.com.br/qrcode/dimplessafv01.pdf
DIMPLESS®

Freeze-drying rico em SOD no tratamento da celulite

DESCRIÇÃO

DIMPLESS® é um concentrado freeze-drying da variedade francesa do melão de Cantaloupe (Cucumis melo L. clipper) rico em superóxido dismutase (SOD), representando em média 85 a 90% da composição total, tendo além disso outros antioxidantes como a catalase, glutatonia peroxidase, coenzima Q10, ácido lipoico, carotenoides, vitaminas A, E e C.

MECANISMO DE AÇÃO

DIMPLESS® induz a expressão de enzimas endógenas como superóxido dismutase, catalase e glutatonia peroxidase, proporcionando benefícios antioxidantes e anti-inflamatórios ao organismo, além de atuar como agente anti-fibrótico focado nas principais causas da fibrose; assim DIMPLESS® limita a diferenciação e proliferação de miofibroblastos ativos receptores de citocinas envolvidos no desenvolvimento e manutenção da fibrose, controla da síntese da matriz extracelular e sequestra espécies reativas de oxigênio, implicando na degradação e eliminação dos miofibroblastos, detendo o agravamento da fibrose e melhorando o aspecto da celulite.

INDICAÇÕES

✓ Melhora o aspecto da celulite;
✓ Prevenção e redução da fibrose;
✓ Anti-inflamatória.

DOSE USUAL

Recomendação oral de 40 mg de DIMPLESS® ao dia.

SUGESTÕES DE FÓRMULAS

DIMPLESS® (Cucumis melo L. clipper)...

Asiaticosídeo 30 mg
BioBlanc (Oleae Europae (Olive) fruit extract) 100 mg

DIMPLESS® (Cucumis melo L. clipper)...

Cacti-NeaTM (Opuntia ficus-indica) 500 mg
Bio-CG® (beta-glucanos, chitosan) 80 mg
Gynostemma pentaphyllum (98% gipenosídeos) 200 mg

Modo de uso: 1 dose ao dia.
Indicação: auxiliar no tratamento da celulite.

Modo de uso: 1 dose ao dia.
Indicação: anti celulítico com ação drenante e auxiliar na redução do peso.

PRINCIPAIS REFERÊNCIAS

Cellulite – an overview of non-invasive therapy with energy-based systems

Cellulite is one of the most common skin care concerns seen in modern dermatology. The presence of cellulite in the 21st century is now considered a major “problem” whose treatment options are varied and numerous, all with hopes of improving the appearance of cellulite and maintaining its response over a period of time. The purpose of this article is to review cellulite, its predisposing factors, its classification, and some of the more common devices now in use to treat the disorder.

Assessment of SOD B® mechanism of action in vitro: measure of fat cells size and of lipolysis in human adipose tissue explants

Cellulite could be defined as a combination of several factors including enlargement of fat lobules and a fibrosis state induced by alterations of the network of connective tissue strands. In this work, we evaluated the possible mechanism of action of a melon juice concentrate rich in SOD (SOD B®) on human adipose tissue explants. Several doses of SOD B® (corresponding to 0.1, 1 and 100 IU SOD/mL) were added to the fat cells culture and adipocytes metabolism has been measured. Results show a significant 94% increase of lipolysis in treated adipocytes, compared to control, as well as a significant reduction of adipocytes size. Associated with largely documented effect of SOD against fibrosis states, it is concluded that SOD B® is an efficient natural ingredient designated to fight cellulite.

Adiponectin expression in subcutaneous adipose tissue is reduced in women with cellulite

BACKGROUND: Cellulite, which appears as orange peel-type or cottage cheese-like dimpling of the skin on the thighs and buttocks, is a complex, multifactorial, cosmetic disorder of the subcutaneous fat layer and the overlying superficial skin. Adiponectin is an adipocyte-derived hormone mainly produced by subcutaneous fat that shows important protective anti-inflammatory and vasodilatory effects. We hypothesized that adiponectin expressed in the subcutaneous adipose tissue (SAT) might play a role in the pathogenesis of cellulite. We reasoned that a reduction in the expression of adiponectin - a humoral vasodilator - in the SAT of cellulite areas might contribute to the altered microcirculation frequently found in these regions. METHODS: A total of 15 lean (body mass index [BMI] < 25 kg/m(2)) women with cellulite and 15 age- and BMI-matched women without cellulite participated in this study. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to assess adiponectin gene expression. Plasma adiponectin levels were measured using a commercial enzyme immunoassay kit. RESULTS: Adiponectin mRNA expression in the SAT of the gluteal region was significantly lower in areas with cellulite compared with those without (12.6 ± 3.1 AU versus 16.6 ± 4.1 AU; P=0.006). However, plasma adiponectin levels did not differ between women with (20.3 ± 7.3 μg/ml) and without (19.3 ± 6.1 μg/ml) cellulite (P=0.69). CONCLUSIONS: Adiponectin expression is significantly reduced in the SAT in areas affected by cellulite. Our findings provide novel insights into the nature of cellulite and may give clues to the treatment of this cosmetic issue.

REFERÊNCIAS

